

NDepend Case Study: Siemens Healthcare © Siemens Healthcare GmbH 2016 pg. 1

Challenges and Objectives
For its next generation of imaging applications,

Siemens Healthcare GmbH decided to follow a

platform approach to facilitate code reuse and to

reduce development costs. But behind the attractive

aspects of a platform, plenty of challenges presented

themselves:

• How can we guarantee the stability of APIs?

• Can we even make a breaking change?

• How do we guarantee quality over builds?

API Stability
After more than half a decade of development on 5

different sites and involving around 200 developers,

the code base has now about 5 million .NET and 500

thousand native Lines of Code (LOC). Most of the

technologies provided by .NET platforms like

Workflow, WCF, WPF and Direct-Show are being

used, but the teams have been facing a continuous

challenge: the impact of hundreds of changes and

evolutions made each day. Each change, each new

line of code, can potentially impact the code

behavior at runtime and hence break the code

correctness.

This is why at Siemens Healthcare, we invest in

automatic testing to detect regression bugs early

and to enforce that further refactoring won’t break

existing code behavior.

In this continuous challenge against code erosion,

automatic tests are a great way to check code

correctness. But automatic tests cannot detect less

formalized flaws than bugs.

Company:
Siemens Healthcare GmbH

Siemens Healthcare GmbH offers imaging equipment,
information technology, management consulting and
services to hospitals, clinics, medical laboratories, and
other healthcare businesses. The company’s products
and solutions address medical needs in a wide variety of
medical applications, including angiography, computed
tomography, fluoroscopy, magnetic resonance imaging,
mammography, nuclear medicine, oncology, patient
monitoring, radiography, surgery, ultrasound, urology, and
ventilation and anesthesia. Siemens Healthcare has 49
000 employees and operates on all five continents.

NDepend Case Study: Siemens Healthcare © Siemens Healthcare GmbH 2016 pg. 2

However, such flaws impact future code

maintenance, and having code that works is not

enough. New features are constantly requested by

our customers. Code is evolving. When dealing with

such a large scale code base, each minor change can

potentially lead to a future high maintenance cost.

 In 2007, the need for a tool like NDepend became

clear after a particularly tedious situation we faced.

One team developing a basic layer in the system did

some API changes without correctly checking the

impact. "No one is using this" or "just one line

changed". After a few weeks of development, the

result was a real tsunami: the whole system was not

usable and not deliverable for almost a month and in

this case a rollback was not conceivable, we had to

make it run again!

Code Base Quality
From a proper quality point of view, how the code is

actually structured certainly decides the future cost

of maintainability. But preserving a proper code

structure is one part of our challenge against code

erosion. Transforming business logic into code

necessarily appends some sort of fabricated

complexity due to implementation details.

Such fabricated complexity typically comes from too

complex classes, too-deep inheritance tree, wrong

object-oriented programming, methods with too

many parameters, complicated state mutation at

runtime, poorly named code elements, a lack of

abstraction usage to decouple some

implementations, poor usage of encapsulation etc.

The impact of one occurrence of such code smell is

negligible on the whole system quality. But what we

wanted to make sure that these wrong practices

were the exception and not the rule. We needed a

way to finely control the quality of the code

developed.

Solutions
API Stability
To address the challenge of controlling the API

evolution a first step was to define a communication

process to bring transparency for our intern

customer. Each developer was asked to document

and distribute his breaking changes. Such a

procedure might look counter-productive. Indeed,

for a small team it is overkill but for more than 100

developers dispatched all over the world it is a way

to communicate the changes, and it is a mandatory

step to continuously deliver a running system.

NDepend made it easy to deal with dependencies

and avoid chaos in our large code base. The tool

provides a language named Code Query Language

(CQLinq). With CQLinq, we can query our code base

as one would query a relational database with SQL.

It is as fast and easy as:

from t in Types where t.IsUsing ("MyType") select t

from t in JustMyCode.Types
where t.DeriveFrom("MyBaseType") &&
 t.Implement("IInterface")
select t

And because each client of the platform delivers an

NDepend repository to the platform team to be able

to check the impact of a change, it becomes really

simple to obtain an impact over the different

product lines.

Despite these improvements, we were always

exposed to unexpected API changes. To be able to

reduce the API change leak, we developed a tool

based on the NDepend API and the NDepend ability

to compare 2 snapshots of our code base.

NDepend Case Study: Siemens Healthcare © Siemens Healthcare GmbH 2016 pg. 3

On the contrary to a source code repository,

NDepend is able to make the difference between a

change in a comment or in the code itself in the

characterization of the code element. This capability

was used to develop a tool to definitively detect any

breaking changes at a syntactic level and to integrate

it as a barrier in the continuous integration build

chain. The tool is able to detect about 15 breaking

change types: from removing a public class, changing

a value of an enumeration, or making a class sealed,

and changing class hierarchy. Doing it like this, the

developer can work in an efficient way and any

breaking changes can still be detected before they

reach the consumer and be treated accordingly

Code Base Quality
A second challenge of a big software project is to

maintain a low ratio of code smells in the

implementation; NDepend proposes some

predefined CQLinq rules. Each rule can be easily

customized to our particular needs. Dozens of code

metrics are supported and detecting complex

methods can be as easy as writing:

warnif count > 0 from m in JustMyCode.Methods
where // Code Metrics' definitions
 m.NbLinesOfCode > 30
 m.CyclomaticComplexity > 20
 m.ILNestingDepth > 5 ||
 m.NbParameters > 5 ||
 m.NbVariables > 8 ||
 m.NbOverloads > 6

select new { m, m.NbLinesOfCode,
m.CyclomaticComplexity, m.ILNestingDepth,
m.NbParameters, m.NbVariables, m.NbOverloads
 }

And now with NDepend v6, we are also able to

define our own metric and to visualize it in the

metric view. This feature is very useful for the

architects when they want to make a decision of a

refactoring or test improvements. Making a decision

just based on one metric does not make sense as

you just see one facet of the problem. But being able

to combine metrics (facets) and to weight and

visualize them, the matches on the metric view

provides an incredible opportunity for analysis and

decision support capability to the architects.

Benefits
The benefits of adopting NDepend in our

development efforts are clear. The work of our

architects is made more concrete and a lot of time is

saved. Meantime, the overall code quality has

increased, making our code base a better place to

develop.

Improved Communication
CQLinq gives our architects and key developers a

natural way to formalize expectations in term of

code quality, code structure and code evolution.

CQLinq rules are named and can contain comments.

A CQLinq rule itself represents a concrete artifact to

express implicitly to the team a good practice that

we want to enforce. When a developer violates a

CQLinq rule, he gets immediately informed about

the rule they have to follow or the code smell to be

avoided.

By dispatching their knowledge through the means

of NDepend’s capabilities, the guidance of our

architects is now more visible and made more

concrete to the team. Feedback direction used to be

from the architect team to the developers, to inform

them about large scale decisions. Now, we often

observe that developers come back to us to discuss

particular choices that were made.

The whole project benefits from this new synergy.

Developers feel more implicated in the respect and

definition of our code rules, and architects can make

better decisions. This is thanks to being able to

gather more accurate information from the code

itself.

NDepend Case Study: Siemens Healthcare © Siemens Healthcare GmbH 2016 pg. 4

Save Up to 1 Day

per Sprint per Architect
NDepend also helps our architects save time. Now

we can program all sorts of rules and constraints to

be verified often and automatically through CQLinq.

The process of code reviewing is relieved from

numerous code smells that are fixed at development

time. Moreover, reviewing code changes is now

made easy thanks to NDepend's diff features.

Time is also saved because of the very interactive

nature of CQLinq querying. A CQLinq query can be

refined on a whim and the result is displayed live.

Now we get immediate answers when we wonder if

some refactored code is well covered by tests, if a

library is properly thread-safe, or how many projects

will be broken if we do a public API change.

Finally, time is also saved thanks to the ability of

NDepend to cope with very large code bases. With

more than 3000 Visual Studio projects (including test

projects), our code is obviously partitioned in

numerous Visual Studio solutions. In this context,

answering simple questions like who’s dependent on

what out of the Visual Studio shell, can quickly

become a burden. NDepend lets us visualize high-

level facts that involve several Visual Studio

solutions.

Lower Maintenance Cost
As mentioned earlier, we experienced that a small

mistake in a popular library can lead to weeks of

hard work to recover. Trying to formalize and to

enforce hundreds of constraints is a way to control

what kind of code we want in the future. While we

anticipate the evolution of our product and struggle

for higher quality code, our continuous goal is code

that is cheaper to maintain.

It is hard to define what maintainable code is, but it

is easy to express what should be avoided: code not

properly layered, not properly encapsulated,

components boundaries that are not well defined,

code that violates basic code metrics thresholds, all

these are flaws that we definitely want to get rid of.

NDepend helps us to find and fix existing flaws and

prevent future ones. For the last 7 years, we have

been investing in a great deal of effort to keep our

code maintainable. It is now clear that we already

avoided several costly large scale refactoring

dramas.

Siemens AG Corporate Technology
Sébastien Andreo
Guenther-Scharowsky-Str. 1
D-91058 Erlangen Germany

Siemens Healthcare Headquarters
Siemens Healthcare GmbH
Henkestraße 127
91052 Erlangen
Germany

Phone: +49 9131 84-0
siemens.com/healthcare

http://www.siemens.com/healthcare

